Towards a Multi-Agent Network for The Netherlands National Police

Bas Testerink
Bas Testerink
The Netherlands National Police
Central Unit
Police Profession/Police A.I. Lab

What I do
I act as a bridge between the police and academia.
Decentralized A.I. supported decision-making in legal environments.

1. The general idea and examples
2. An MVP agent architecture
3. A toy example demonstration
4. Some considerations
5. If there’s time left: technical details
Human-Machine Team

Human tasks
Analysis support

Questions
Analysis and Interpretation
Administrative updates

Data

Input documents

Questions
Analysis and Interpretation

Output documents
Human-Machine Team

Capability enhancement:
- Multi-modal search
- Anomaly detection
- Unsupervised clustering of data

Decision-support and -automation:
- Information product production and processing
- Digitization vs analog processes with digital means
- Hypothesis testing (scenario reasoning, simulations)
The Police as a Human-Machine Team

1 Project = 1 (Single/Multi) Agent System. The aim: semi-autonomous law-enforcement processes.
The agent judges the content of the report on legal context and asks about legally relevant but missing information.
Example: international request handling

- Outbox
- Inbox
- Triage Agent
- Coordinator
- Specialist 1
- Specialist Agent 1
- Specialist k
- Specialist Agent k
- Domain Data 1
- Domain Data k
- International Monitor
- Aggregation Service
- Feedback
- Suggestions
- Updates
- Data
- Annotated messages
- Overviews
- Message summaries
- Incoming messages
- Outgoing messages

Testerink | Police MAS
Example: international request handling
Demands

- **Accuracy**: Avoid high-impact errors
- **Transparency**: Explain automated decisions
- **Controllable**: Detectable and repairable errors
- **Proportional**: Minimization of resource spending and information/data gathering.
Demands

- **Accuracy**: Automated experimentation with supervised learning
- **Transparency**: Argumentation interwoven with decision making
- **Controllable**: Human-in-the-loop design
- **Proportional**: Reinforcement learning for policy optimization combined with legal relevancy based on argumentation
Toy Example: International Requests
We are looking for Jan Jansen. We wonder whether he traveled to your country. He is wanted for murder. Please only reply in case of a positive hit.
Toy Example: International Requests

Language

English

Sentence Detect, Tokenizer and POS Tagger

- 0: We are looking for Jan Jansen.
- 1: We wonder whether he travelled to your country.
- 2: He is wanted for murder.
- 3: Please only reply in case of a positive hit.

Entity Detect

- person (1)
Toy Example: International Requests

0: We are looking for Jan Jansen.

Sentence: "We are looking for Jan Jansen."

<table>
<thead>
<tr>
<th>Token</th>
<th>POS Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>We</td>
<td>PRON</td>
</tr>
<tr>
<td>are</td>
<td>VERB</td>
</tr>
<tr>
<td>looking</td>
<td>VERB</td>
</tr>
<tr>
<td>for</td>
<td>ADP</td>
</tr>
<tr>
<td>Jan</td>
<td>PROPN</td>
</tr>
<tr>
<td>Jansen</td>
<td>PROPN</td>
</tr>
</tbody>
</table>
Toy Example: International Requests

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request/Commit</td>
<td>Yes</td>
</tr>
<tr>
<td>o_positive_only_reply</td>
<td>No</td>
</tr>
</tbody>
</table>
Toy Example: International Requests

Input Classifiers

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>o_positive_only_reply</td>
<td>Yes</td>
</tr>
<tr>
<td>~o_positive_only_reply</td>
<td>No</td>
</tr>
<tr>
<td>o_crime_suspect</td>
<td>Yes</td>
</tr>
<tr>
<td>~o_crime_suspect</td>
<td>No</td>
</tr>
<tr>
<td>o_travel_question</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Argumentation

Argumentation Setup

Rules

\[
\begin{align*}
& o_{\text{positive_only_reply}} \rightarrow \neg o_{\text{positive}} \rightarrow t_{\text{feedback}} \\
& \neg o_{\text{request}} \rightarrow \neg t_{\text{feedback}} \\
& o_{\text{travel_question}} \rightarrow o_{\text{request}} \\
& o_{\text{travel_question}} \rightarrow \neg o_{\text{travel_hit}} \rightarrow o_{\text{request_handled}} \\
& o_{\text{travel_question}} \rightarrow o_{\text{travel_hit}} \rightarrow \neg o_{\text{positive}} \\
& o_{\text{travel_question}} \rightarrow o_{\text{travel_hit}} \rightarrow o_{\text{positive}} \\
& o_{\text{travel_question}} \rightarrow \neg o_{\text{travel_hit}} \rightarrow \neg o_{\text{transfer}} \rightarrow o_{\text{request_handled}} \\
& o_{\text{travel_question}} \rightarrow o_{\text{travel_hit}} \rightarrow o_{\text{transfer}} \rightarrow o_{\text{discussed_travelling_with_peer}} \rightarrow o_{\text{request_handled}}
\end{align*}
\]

Topics

- t_{\text{feedback}}
- t_{\text{relay_intel}}

Observable

- o_{\text{positive_only_reply}}
- \neg o_{\text{positive_only_reply}}
- o_{\text{travel_question}}
- \neg o_{\text{travel_question}}
- o_{\text{travel_hit}}
- \neg o_{\text{travel_hit}}
- o_{\text{crime_suspect}}
- \neg o_{\text{crime_suspect}}
- o_{\text{check_id}}

Observations

- o_{\text{positive_only_reply}}
- o_{\text{crime_suspect}}
- o_{\text{travel_question}}
- \neg o_{\text{check_id}}
Toy Example: International Requests

And/Or Graph
Toy Example: International Requests

Attack Graph
Toy Example: International Requests

Relevance Map

<table>
<thead>
<tr>
<th>Topic</th>
<th>Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_feedback</td>
<td></td>
</tr>
<tr>
<td>t_relay_intel</td>
<td></td>
</tr>
</tbody>
</table>
Suggested Course of Action
Verdict: Send feedback
Subject:
Re: Test subject

Content:
To whom it may concern

We have processed your request and have come to the conclusion that:

Jan Jansen indeed travelled to the Netherlands. Furthermore, Jan Jansen also transferred in The Netherlands. Please find attached additional information.

With kind regards,
Findings

<table>
<thead>
<tr>
<th>Priority</th>
<th>NL Relevant</th>
<th>Theme</th>
<th>Intent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>✔ Yes</td>
<td>Misc</td>
<td>Request for information</td>
</tr>
</tbody>
</table>

- No GBA-check was executed.
- The intel-check returned a negative result.
- A subject travelled to The Netherlands.
- A subject transferred in The Netherlands.
Motivation

An defensible argument can be made for replying with feedback for the sender. Feedback should be sent back to the sender if the sender made a requests for which the investigation is done. This was applicable because:

- The sender submitted a request. If the sender asked a travel question, then that counts-as a request. This was applicable because:
 - The sender asked a travel question. (this was observed by a classifier)
- The investigation for the sender is done. If the sender asked a travel question, and there was a travel hit including a transfer, and this transfer is discussed with the relevant peers, then the investigation is done. This was applicable because:
 - The sender asked a travel question. (this was observed by a classifier)
 - There was a positive hit on the travel database. (this was observed by a classifier)
Toy Example: International Requests

- All found transfers have been discussed with the relevant peers. (this was observed by a classifier)

It was not detected whether newly discovered intel should be relayed internally. There was no applicable rule.

1. The following rule was not applicable:
 - If the requests contains a crime suspect which occurs in the intel database, then intel should be relayed.
 Because: It was not detected whether there was a positive hit on the intel database. (this couldn't be observed)
Toy Example: International Requests

<table>
<thead>
<tr>
<th>Step</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Initial action</td>
<td>2: Check travel database</td>
</tr>
<tr>
<td>DETAILS</td>
<td>Read the initial mail</td>
</tr>
<tr>
<td>RESULT SUMMARY</td>
<td>Read mail with subject: Test subject</td>
</tr>
<tr>
<td>4: Discuss travelling with peer</td>
<td>5: Check intel</td>
</tr>
<tr>
<td>DETAILS</td>
<td>conversation(0).</td>
</tr>
<tr>
<td>RESULT SUMMARY</td>
<td>Dummy conversation result.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.I.: more than algorithms

- Maintenance considerations: what skills are required from ‘ground’ personnel and IT?
- How to re-educate people to train and correct A.I. instead of doing the job themselves?
- Who determines what the correct legal and ethical guidelines are on the software level?
- How to engage governmental, scientific, non-profit, hobbyist and business communities?
- What constitutes proper transparency, explainability, fairness and responsibility for an actual application?
Dangers

How does a computer executing a program differ from a person executing bureaucratic protocols?

Are we really entering a legal & ethical new era with A.I. or are we simply creating the steam engine equivalent for bureaucracy?
Importance of formal considerations

- Formal specification may allow for model-checking.
- Formally defined system traces may allow for runtime verification.
- Formal specification allows for a translation of formal theory to practice without burdening a logician/philosopher with coming up with a full real-world example.
- Likely future development: Legislation being translated to formal properties which then are verified in order to certify software that contains autonomous decision-making.
Concluding thoughts

- A.I. offers great opportunities and potential dangers.
- We need to experiment and fail-fast in order to learn and adapt.
- Today we discussed an example agent architecture.
- The police A.I. lab is a good environment for the valorisation of academic ideas on responsibility, legality and machine ethics.
- The police A.I. lab will produce many suggestions, results and examples in the coming years.

(the following slides are some more technical details)
Data is gathered in the business process by the monitor interface. This maintains accuracy and provides (after-the-fact) checks on agent behavior.

Often we need to ‘bootstrap’ a project

For the latter we use internally developed labelling tools with uncertainty and Thompson sampling
For any data set and any deadline, produce a classifier.

Manual experimentation is boring and time-consuming.

Automated supervised learning is still in its infancy.

We’re still exploring this part, but it’s important for maintenance of data-driven applications.
Solution approaches

- A one-size-fits-all classifier.
- Metaclassifier.
 - Grid search
 - Sequential model-based optimization (SMBO)
 - Genetic algorithms

We’re looking into SMAC as a candidate: *Sequential Model-Based Optimization for General Algorithm Configuration*. Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown. 2011 (basically train a regression model that predicts for an algorithm + hyperparameters how ‘good’ it will perform and then use that model in deciding which next algorithm + parameters to try)
Notes on an Auto-Experimenter

- Impacts accuracy because it provides the classifiers and attribute extractors that turn unstructured data to structured data
- The auto-experimenter is not transparent
- The auto-experimenter is an integral part of controllability: this part is responsible for classification errors
- The auto-experimenter improves maintenance efficiency for data-driven applications
We draw upon legal informatics, in particular computational argumentation, for legal reasoning.

Computational argumentation can be used as a basis for explainable A.I.

However, we need to integrate computational argumentation in the machine-learning driven architecture.
We developed a sound polynomial-time approximation algorithm that tells whether more information may change the final decision of the agent.

The argumentation formalism is a simplified version of ASPIC.
We maximize the proportionality of the agent’s data gathering.

We also want to guarantee that we can explain decisions based on their legal context.

For this we transform the argumentation framework to an MDP (argumentation stability is the main influence on the reward function).

For an MDP we can use various known techniques to create the optimal policy or approximation thereof.
Getting the transition probabilities requires some model of the environment.

The appropriate model heavily depends on the application at hand.

Per application a data-mining expert has to look into this part.
Let's discuss the arrows between agents
Let’s discuss the arrows between agents
Argumentation Dialogues

- We use argumentation as a core part of an agent’s explainability
- Argumentation dialogues are therefore a natural choice for their communication
- But we want to be able to verify communicative behaviour
Challenge

How do we specify a communication protocol such that all agents are guaranteed to be able to know whether their own actions are legal?

- No middleware allowed that sees all communication (security)
- Different knowledge/tooling per agent
- No full control over all participants
A protocol is P2P suitable iff for every violation at least one agent (the cause of the violation) witnesses this violation.
Components

- **Dialogue Graph:** We capture the state of the agent in a dialog with a graph (i.e., its arg1 & arg2 log based on O’Keefe’s distinction).

- **Dialogue Templates:** A template tells when a locution is allowed to be sent/received and how this is interpreted in the dialog graph (i.e., how it is interpreted from an argumentation point of view).

- **Template-based System:** A template-based system is one where the agents maintain dialog graphs and use templates to interpret locutions.

- **We prove that template-based systems are P2P suitable.**
We want to interpret dialogues from an argumentation perspective.
Argument 1 captures the structure of arguments.
Argument 2 captures the dialogue structure of argumentative dialogues.
The illocutionary force of a message is an update over the argument 1/2 structure.
Having a P2P suitable protocol is only the start. We still need to know how we may enforce it.

Edit Automata: Automaton based models for runtime controllers

Controller automaton

Edit Automata: Automaton based models for runtime controllers
1. Model of concurrently applied controller automata
2. Revision conflict resolution is captured by a selection function
3. Challenge: find a procedure for constructing the revision function for a set of property enforcing controller automata
1. P2P suitable protocols guarantee that a collaborative controller is possible.
2. The dialogue templates of P2P suitable protocols are building blocks for synthesizing runtime controllers.
3. If each agent has its own runtime controller, then all the controllers of the agents combined are the collaborative runtime controller.
4. Current research: design time verification combined with runtime verification for cross-jurisdiction autonomous software.
How do we actually develop agents?

- Describe parts of the solutions as design patterns and develop libraries to support their application
- Aspect-oriented programming may provide a good solution to the separation of concerns regarding (runtime) verification and business logic
- Use open-source available data science techniques
- SMBO is available as auto-weka and autosklearn
- The argumentation engine and policy learner are in-house developed
- We try to maintain a service-oriented architecture
- Software such as MCAPL provides a basis for model checking
Some other current developments

- Simulation of organized crime as way to obtain an environment model.
- Human-computer interaction, including speech to text, for the actuator.
- Organizational/social change and impact.
- Expansion of natural language processing tooling, in particular application of LSTM’s for attribute extraction.