Reasoning about Structural Properties of Social Networks

REINS closing conference, 11 February 2019

Thomas Ågotnes University of Bergen, Norway Southwest University, China Zhejiang University, China

Joint work with Zuojun Xiong

Overview

- Reasoning about structural properties of networks in modal logic
- The logic of social networks: brief overview of existing approaches
- Structural balance
- A minimal modal logic for reasoning about balance
 - Completeness

Reasoning about structural properties of social networks in modal logic: idea

Atomic propositions *p*: basic properties of *agents* ("is Dutch", "likes bacon")

Complex formulas ϕ : complex properties of agents situated in a social network ("only has female friends", "is linked by no more than seven steps to Kevin Bacon")

Frames: social networks

Models: social networks annotated with basic properties

Reasoning about structural properties in modal logics: examples

Examples: PDL

$\langle family \rangle killer$

does the agent (e.g., the victim) have a family relation to the killer?

[family]male

are all politicians the agent has a family relation to male?

$\langle neighbour; family \rangle president$

does the agent have a neighbour who is in family with the president?

$\langle neighbour \cup family \rangle president$

is the agent either a neighbour of, or in family with, the president?

$\langle friend* \rangle killer$

is the agent (e.g., the victim) indirectly related to the killer through a chain of friends?

Examples: CTL

 $E \bigcirc (politician \land convicted)$ the agent is directly related to a politician with a conviction.

$E\diamondsuit killer$

the agent (e.g., the victim) is *indirectly related to* the killer. I.e., there is a chain of agents a_1, \ldots, a_n such that a_i is related to a_{i+1} and a_1 is the victim (the current agent) and a_n the killer.

 $A \bigcirc (politician \rightarrow male)$ all politicians the agent is related to are males.

$\mathsf{A} \square (politician \to \mathsf{E} \diamondsuit journalist)$

all politicians the agent is indirectly related to, are indirectly related to a journalist.

Examples: PDL (cont.)

$\langle (works_with \cup family) * \rangle gonzales$

is there an indirect connection, via work and family relationships, between the agent (e.g., Richard Nixon) and Gonzales (one of the Watergate burglars)? (I.e., is there a chain of agents from Nixon to Gonzales where each agent in the chain is related to the next through either work or family?)

Examples: CTL (cont.)

$\mathsf{E}(freemason\mathcal{U}private_investigator)$

the agent is indirectly connected to a private investigator, through a chain of agents whom all are freemasons.

Examples: multi-dimensional CTL (Ågotnes et al., 2009)

$E_{family} \bigcirc killer$

is the agent (e.g., the victim) directly related to the killer via the family relation?

$E_{neighbour} \bigcirc E_{family} \bigcirc president$

does the agent have a neighbour in family with the president?

Examples: ALT (turn-based synchronous)

$\neg \langle \langle \{ann, bill\} \rangle \rangle \diamondsuit \neg policeman$

no matter who *ann* and *bill* choose as their friend, respectively, there will be a friend-of-a-friend path from the current agent to a police man (where *ann* and *bill* are restricted to their chosen friends). This might for example be a relevant query if one is interested in information flow: no matter whom of their friends *ann* and *bill* confide in, their secret can reach a police man.

Formalising reasoning about networks: existing approaches

Epistemic approaches

- Model the often subtle consequences of events in social networks on higher-order knowledge and belief
- Pacuit and Parikh 2005; Wang et al 2010; Ruan and Thielscher 2011; Van Eijck and Sietsma 2011; Seligman et al 2011, 2013; van Ditmarsch et al 2016; Xiong et al 2017

 $\downarrow n \ FK \langle F \rangle n$

(all my friends know they are friends with me)

Approaches to reasoning about network structure

- Logical models of social networks:
 - 1. Network structure: binary social relation over a set of agents
 - 2. Features of agents: atomic propositions
- · Dynamics
 - Change in the network structure based on features (typically $[\odot_{\theta}]\phi$ similarity) (Smets and Velazquez-Quesada, LORI 2017, DALI 2017)
 - Change in the features based on network structure (Baltag et al., Studia Logica 2018) $[adopt]\phi$

• Epistemics are (again!) also often also taken into account.

Approaches formalising concepts from social network analysis

- Information cascades: (Christoff, 2016; Baltag et al., 2013), dynamic epistemic logic
- Diffusion: (Christoff, 2016; Christoff and Hansen, 2015), dynamic hybrid logic
- Opinion dynamics: (Hansen, 2015), extended fuzzy logic

Existing approaches

- Mainly focussed on information flow, less on structural properties
- Do not consider the nature of relations: weak or strong, friend or enemy, ...
- Don't assume anything about the structure of the network (apart from basic properties like symmetry of the friendship relation)

Positive and Negative Relationships Relationships can be of many different types One common distinction: positive vs. negative typically "friends" or "enemies" modelled using *signed* graphs

Complete graphs

- Assume first that the social network graph is complete
 - Everyone knows (friend or enemy) everyone else

Structural balance

- Key idea: for any group of three people, some combinations of + and are more plausible than others in real social networks
- Unbalanced triangles occur less frequently in social settings

The balance theorem: *any* structurally balanced (complete) graph can be divided into a group X of mutual friends, and a group Y of mutual friends, such that everyone in X is an enemy of everyone in Y

Balance: general definition

The following are equivalent:

- it is possible to fill in "missing" edges to get a balanced complete network (**local** view)
- it is possible to divide the network into to mutually opposed sets with only positive internal edges (global view)
- there is no cycle with an odd number of negative edges

n-balance

- Full balance: *ideal state* that the network converges towards if nothing else changes.
 - Unrealistic on large networks (only a single bad cycle needed for unbalance!)
- Long cycles with an odd number of negative edges are more likely to occur than short ones
 - "It well documented fact that the longer cycles have less effect upon a person's tension than the shorter ones" (Estrada and Benzi, 2014)
- Definitions of balance that are used in practice often only take the shortest
 cycles into account, or give less weight to longer than to shorter cycles
- This motivates our definition of *n-balance*

n-balance

n-balance

Def. n-balance: let n be a natural number. A (general) signed social network is *n-balanced* iff it has no cycles of length less than or equal to n with an odd number of negative edges.

- An *approximation* of full balance, taking only the shortest cycles into account
- A measure of the *degree* of balance (the highest number n such that the network is n-balanced)

Equivalent: any sub-graph with n nodes is balanced.

A minimal modal logic

Interpretation (standard!)

Formulas are interepreted as properties of agents.

 $\begin{array}{lll} M,a\models p & \text{iff} & a\in V(p),\\ M,a\models \neg\phi & \text{iff} & M,a\not\models\phi,\\ M,a\models \phi_1\vee\phi_2 & \text{iff} & M,a\models\phi_1 \text{ or } M,a\models\phi_2,\\ M,a\models \phi\phi & \text{iff} & \text{there exists } b\in A, aR^+b \text{ and } M,b\models\phi,\\ M,a\models \phi\phi & \text{iff} & \text{there exists } b\in A, aR^-b \text{ and } M,b\models\phi \end{array}$

 $\models \phi$: $M, a \models \phi$ for all M and a

 $\models_n \phi: M, a \models \phi$ for all *n*-balanced *M* and *a*

Strategy: find suitable *sufficient* conditions for n-balance

Find a set of formulas $S = \bigcup_{\chi \in \mathcal{L}} S_{\chi}$ such that:

1. any $\phi\in S$ is sufficient for n-balance: $M,a\models\phi\Rightarrow$ there is no odd cycle of length $\leq n$ starting in a

2. the following rule is *sound*

$$\frac{\vdash \phi \to \chi}{\vdash \chi} \qquad \phi \in S_{\chi}$$

(2) ensures that any finite consistent set of formulas can be extended to a finite consistent set containing a formula in S.

(1) ensures n-balance if a formula in S holds in every state.

Suitable sufficient conditions

Let:

- $(\boxplus; \boxminus)^{x,y}_{\phi}$ be the set of all formulas that are obtained by prefixing ϕ with a sequence of x positive (\boxplus) and y negative (\boxminus) box modalities in some order;
- $\bigwedge_{n} (\boxplus; \boxminus)_{\phi}^{O}$ be the conjunction of all $\bigwedge (\boxplus; \boxminus)_{\phi}^{x,o}$ such that x + o = n and o is an *odd* number;
- $\bigwedge_{n} (\boxplus; \boxminus)_{\phi}^{E}$ be the conjunction of all $\bigwedge (\boxplus; \boxminus)_{\phi}^{x, e}$ such that x + e = n and e is an *even* number.

$$\begin{array}{l} name_{n}(\phi,\psi) = \\ \boxplus(\phi \land \neg \psi) \land \bigwedge_{n-1}(\boxplus; \boxminus)^{O}_{\neg \phi \lor \psi} \land \boxminus(\neg \phi \land \psi) \land \bigwedge_{n-1}(\boxplus; \boxminus)^{E}_{\phi \lor \neg \psi} \end{array}$$

Suitable sufficient conditions $\frac{name_n(\phi, \psi) =}{\boxplus(\phi \land \neg \psi) \land \bigwedge_{n-1} (\boxplus; \boxminus)^O_{\neg \phi \lor \psi} \land \boxminus(\neg \phi \land \psi) \land \bigwedge_{n-1} (\boxplus; \boxminus)^E_{\phi \lor \neg \psi}}$ Lemma. For any ϕ, ψ, n, M, a : $M, a \models name_n(\phi, \psi)$

M has no cycle of length $\leq n$ starting in a

Lemma. The rule Nb_n

is sound

$$\frac{\vdash name_n(p,q) \to \chi}{\vdash \chi} \qquad \text{where } p,q \notin P(\chi) \text{ and } p \neq q$$

Axiomatic system (parameterised by n)

(PC)	all substitution instances of propositional tautologies	
(T^+)	$\vdash p \rightarrow \oplus p$	(Positive-reflexivity)
(B^{\pm})	$\vdash p \to (\boxplus \oplus p \land \boxplus \oplus p)$	(Symmetry)
(Dual)	$\vdash Lp \leftrightarrow \neg M \neg p$	(Duality)
(K_s)	$\vdash M(p \to q) \to (Mp \to Mq)$	(Signed K-axiom)
$\left[\left(\bar{\mathbf{M}} \bar{\mathbf{P}} \right)^{-} \right]$	$\vdash \phi \to \bar{\psi} \And \vdash \bar{\phi} \Rightarrow \vdash \bar{\psi}$	(Modus Ponens)
(Nec)	$\vdash \phi \Rightarrow \vdash M\phi$	(Signed Necessitation)
(US)	$\vdash \phi \Rightarrow \vdash \phi(\psi_1/p_1, \cdots, \psi_n/p_n)$	(Universal Substitution)
(\mathbf{Nb}_n)	$\vdash name_n(p,q) \to \chi \ \Rightarrow \vdash \chi, \text{where } p,q \in \text{PROP} \setminus P(\chi), p \neq q$	(n-balanced)

Figure 1: Axiomatization \mathbf{pnl}_n , where $p, q \in \mathsf{PROP}$, and $L \in \{ \oplus, \ominus \}$ and $M \in \{ \boxplus, \ominus \}$ are the respective dual operators.

Theorem. For any natural number n, the system is sound and complete with respect to all n-balanced models.

Outline of completeness proof

- Define standard canonical "model". Undefinability nbalance => will not be a proper model
- Use the step-by-step method to define a submodel of the canonical "model" that:
 - is a proper model
 - is n-balanced (ensured by including a name-formula in each state, which the Nb rule allows us to do)
 - we can prove a truth lemma for

Further results

Theorem. \mathbf{pnl}_1 is sound and complete with respect to the class of all models.

$(4B) \quad ((\diamondsuit p \lor \Diamond \Diamond p) \to \diamondsuit p) \land ((\diamondsuit \Diamond p \lor \Diamond \diamondsuit p) \to \Diamond p)$

Theorem. $\mathbf{pnl}_1 + 4\mathbf{B}$ is sound and complete with respect to the class of all balanced complete models.

Summary

- · Reasoning about structural properties of social networks
- Asked: what are the logical consequences of networks being balanced to a certain degree?
- · Defined the notion of n-balance
- Studied family of minimal modal logics => fundamental principles of reasoning about balance
- · Completeness results:
 - wrt. all networks
 - wrt. n-balanced networks, for any n
 - wrt. balanced complete networks

Future work

- Combine with epistemic social network logics such as (Seligman et al., 2013)
- Weak balance (Davis, 1967)
- Full balance on general (not necessarily complete)
 networks
- Logical dynamics of the kinds of change caused by unbalance in the spirit of dynamic epistemic logic